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Abstract

This paper investigates the elastic lateral-torsional buckling of I-beams under linear moment gradient that very
precisely incorporates the effects of moment gradient and various end restraints. The elastic critical buckling moments
are obtained independently by using: (1) the Bubnov-Galerkin method and (2) the finite element method. The present
formula of the moment gradient correction factor cannot satisfactorily predict the buckling capacities of doubly
symmetric and monosymmetric I-beams with various end restraints. We propose alternative equations for evaluating
the moment gradient correction factor, considering end restraint conditions.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Lateral torsional buckling is a limit state that may often be a controlling factor in steel beam designs.
Design specifications usually provide buckling solutions derived for uniform moment loading condition
and account for variable moment along the unbraced length with a moment gradient correction factor Cy
applied to these solutions.

For a simply supported doubly symmetric I-beam which is prevented from lateral deflection and twisting
but free to rotate laterally and warp, the elastic critical uniform moment, M., can be expressed as follows
(Trahair, 1977):

Mooy = \/ EIVGKT V 14+ w? (1)
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in which

n [ El
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EI, = the minor axis flexural rigidity; GKt = the St-Venant torsional rigidity; EI, = warping rigidity; L = the
unbraced length of the beam; and W = torsional slenderness parameter.

If the end moments are unequal, the critical moments cannot be predicted by Eq. (1) so an adequate
evaluation is required. Most design specifications provide a solution for lateral-torsional buckling of a
doubly symmetric I-beam subjected to unequal end moments as follows:

Mcr = CbMocr (3)

where M, is obtained from Eq. (1), and C, is a moment gradient correction factor that accounts for the
increased resistance to lateral-torsional buckling when the applied loading does not produce constant, or
uniform, moment over the entire unbraced length of beams.

The equation for the C, factor that was used in the 1st edition of AISC Specifications (1986) is

Co=175+1.05-r+0.3-/7<2.3, r:% 4)
My

where r represents an end moment ratio, My is the larger end moment, and Mjs is the smaller end moment.
The end moment ratio, r, is taken as positive for moment causing reverse-curvature bending and negative
for single-curvature bending as shown in Fig. 1. Eq. (4) was presented by Salvadori (1955).

Kirby and Nethercot (1979) presented an alternative equation for Cy,, which is applicable for any shape
of moment diagrams. The equation is

12.5Mmax

C p—
® T D SMipax + 3Ma + 4Mp + 3Mc

(5)

where M,y is the absolute maximum moment along L, and Ma, Mg, and M are the absolute moments at
the quarter, the center, and the three-quarter point, respectively.

The 3rd edition of the American Institute of Steel Construction (AISC) load and resistance factor design
(LRFD) specifications (2001) has incorporated Eq. (5) for C,. The American Association of State Highway
and Transportation Officials (AASHTO) LRFD specifications (1994) has included both Eq. (4) and (5)
for Cy.

The SSRC Guide (Galambos, 1998) provides a solution for a lateral-torsional buckling moment, M7, of
the monosymmetric I-beams subjected to unequal end moments as follows:

M3 = CoMg, (6)

For a simply supported monosymmetric I-beam under uniform moment, elastic critical uniform moment,
M™ | can be expressed as (Kitipornchai and Trahair, 1980; Kitipornchai et al., 1986)

1 |
M;‘;r:%«/EIyGKT JI+W 420450

e

Fig. 1. Simply supported I-beams under linear moment gradient.

(7)
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in which
EI,

Y

The term f3, is the monosymmetric parameter defined as

ﬂlelx(/szydA+/Ay3dA>—2yo )

in which x and y are coordinates in a cross section based on the centroidal principle system having the x-axis
as the major axis, and /; is the 2nd moment of inertia about the major axis, and yj is the coordinate of the
shear center.

The finite element program developed by Lim et al. (2002) is used to investigate the accuracy of the
present design formulae, Egs. (4) and (5). The FE model is built with two-node beam elements including the
warping degree of freedom. The C, factors for a simply supported doubly symmetric I-beam computed
using Egs. (4) and (5) are shown in Fig. 2 and Table 1. The C, factors obtained from a finite element
analysis (Lim et al., 2002) are also shown in Fig. 2 and Table 1 for comparison.

The nondimensional buckling moment for a simply supported monosymmetric I-beam computed using
Egs. (4) and (5) is shown in Fig. 3 and Table 2. The nondimensional buckling moment obtained from a
finite element analysis is also shown in Fig. 3 and Table 2 for comparison. From these results, we find that
the present design formulae, Egs. (4) and (5), to account for the effects of the moment gradient may be
either highly unsafe or overly conservative.

In Fig. 3 and Table 2, the degree of monosymmetry, p, is given by (Kitipornchai and Trahair, 1980)

L¢

IyC + IyT

in which I,c, 1,1 are the section minor axis second moments of area of the compression and tension flanges,
respectively. Nondimensional buckling moment, y,, is defined as

m .
g Mer L (11)
VEIL, - GKr
Since the lateral-torsional buckling implies three kinds of deformation (twisting, lateral bending, and
warping), end restraints have a pronounced effect on the elastic lateral-torsional buckling strength of

p= (10)

O  W=1.063(FEM) 3.5 T O W=0.152(FEM)
""" AISC(2001), Eq. (5) AISC(1986), Eq.(4)

3F

Co

0.5

1Y
-1.5 -1 -0.5 0 0.5 1 1.5

End Moment Ratio (r)

Fig. 2. C, factors for a simply supported doubly symmetric I-beam under moment gradient.
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Table 1

Cy, factors for a doubly symmetric I-beam (W = 1.063) under moment gradient
End moment ratio  C, (FEM) AISC (2001), Eq. (5) AISC (1986), Eq. (4)
) Cy Error (%) Cy Error (%)
-1 1 1 0 1 0
-0.8 1.110 1.087 -2.04 1.102 —-0.68
-0.6 1.243 1.190 —4.21 1.228 -1.19
-0.4 1.405 1.316 -6.34 1.378 -1.92
-0.2 1.603 1.471 -8.26 1.552 -3.18
0 1.842 1.667 -9.53 1.750 -5.01
0.2 2.121 1.923 -9.33 1.972 -7.02
0.4 2.425 2.155 -11.13 2.218 -8.54
0.6 2.705 2.193 -18.92 2.300 -14.96
0.8 2.852 2.232 -21.73 2.300 -19.35
1 2.726 2.273 -16.62 2.300 -15.62

W=0.851

""" AISC(2001), Eq.(5) 4 ----- AISC(2001), Eq.(5)

AISC(1986), Eq.(4) AISC(1986), Eq.(4)
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End Moment Ratio (r) End Moment Ratio (r)
(a) p=0.3 (b) p=0.7

Fig. 3. Nondimensional buckling moment for a simply supported monosymmetric I-beam under moment gradient.

Table 2

Nondimensional buckling moment for a monosymmetric I-beam (W = 0.851, p = 0.7) under moment gradient
End moment ratio (r) C, (FEM)  AISC (2001), Eq. (5) AISC (1986), Eq. (4)

Gy Error (%) Gy Error (%)

-1 5.380 5.380 0 5.380 0
-0.8 5971 5.848 -2.06 5.929 —-0.71
-0.6 6.687 6.405 —4.22 6.607 -1.20
-0.4 7.555 7.079 —-6.29 7.414 -1.86
-0.2 8.614 7.912 -8.15 8.350 -3.06
0 9.883 8.967 -9.27 9.415 -4.74
0.2 11.325 10.347 -8.64 10.610 -6.31
0.4 12.742 11.595 -9.00 11.933 -6.34
0.6 13.487 11.799 -12.52 12.374 -8.25
0.8 12.325 12.009 -2.56 12.374 0.40

1 9.958 12.228 23.17 12.374 24.65




N.-H. Lim et al. | International Journal of Solids and Structures 40 (2003) 5635-5647 5639

beams. This paper presents a more accurate solution for the elastic lateral-torsional buckling of I-beams
under a linear moment gradient. This solution accurately incorporates the effects of the moment gradient
and various end restraints. The elastic critical buckling moments are obtained independently by using: (1)
the Bubnov—Galerkin method and (2) the finite element method. These results are then compared with
those furnished by the present design formulae.

2. Approximate buckling formula

Consider the monosymmetric I-beam of span L as shown in Fig. 1. The ends of the beam are free to
rotate about the major principal axis, but are restrained against twisting about the longitudinal axis. The
Bubnov-Galerkin method is applied to find an approximate solution of the following differential equation
governing lateral-torsional buckling of beams (Vlasov, 1960).

EL-u" + 1% (M,-0)" =0 (12)

El,- 0" —1* GKy - 0" +L* - My-u" —L*- B, - (M- 0) =0 (13)

where u and 0 denote the lateral deflection and twisting, respectively, M, is the bending moment about the
major axis and the prime denotes differentiation with respect to dimensionless variable ¢ (¢ =z/L,
0<z<D).

The buckled shape of beams subjected to the linear moment gradient could be reasonably approximated
by the two terms for the lateral deflection, u, and one term for the angle of twist, 6.

u=A1 - +42- 1 (14a)

where the functions y;, y, and ¢, are so chosen that the buckled state of beams should satisfy the given
boundary conditions as shown in Table 3; A1, 42, and Bl are unknown coefficients. A fourth degree
polynomial for the functions y, and ¢, and a fifth degree polynomial for the function y, are chosen for
simplicity of mathematical treatment.

The bending moment at any point along the span can be expressed as

Mo=M-{1—(1+7r) & (15)

in which M is the left-hand end moment as shown in Fig. 1.

2.1. Doubly symmetric I-beam

Using the Bubnov—Galerkin approach and approximate functions for u and 60, the elastic buckling
moment, M., can be calculated by

Table 3
End restraint conditions
End restraints BC-1 simply supported BC-2 fixed end BC-3 warping prevented
Lateral displ. Prevented Prevented Prevented
Lateral bending Free Prevented Free
Twisting Prevented Prevented Prevented

Warping Free Prevented Prevented
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Mcr =0 -0 'Mocr (16)

in which o; and o, are the coefficients that depend on the linear moment gradient and the end restraint
condition, respectively.

>
V=P 4R (147

where R1 is the coefficient that depends on the interaction between the moment gradient and the end re-
straint condition. For BC-1, R1 = 0.132; for BC-2, R1 = 0.156; and for BC-3, R1 = 0.087. These R1 values
can be used in Eq. (17). In the case of the uniform moment condition (» = —1), «; = 1. For BC-1, Eq. (17)
provides an identical result to that of Kitipornchai et al. (1986) using the finite integral method.

oy can be calculated by

B 1 VK + W2
K, Ky-VR3 1+ W2

where K, and K are the effective length factors for the lateral and warping restraint, respectively. For BC-1,
K,=1,Ky=1;for BC-2, K, =0.5, Ky = 0.5; and for BC-3, K, = 1, Ky = 0.5. These effective length factors
can be used in Eq. (18). In Eq. (18), R3 is the coefficient that depends on the difference between the lateral
and warping restraint conditions. For BC-1 and BC-2, R3 = 1; for BC-3, R3 = 0.8.

o =

(17)

0

(18)

2.2. Monosymmetric I-beam

The nondimensional elastic buckling moment, y., for the monosymmetric I-beam, can be expressed as
follows:

1 1 0 1 0 )2 ( W2>
e Gl —F ) (Gl —F— ) + (142 19
koves 12 M K VRS \/4 ( K, VR K (19)

in which G1 = (1 — r)/2. For BC-1, Eq. (19) provides an identical result to that of Kitipornchai et al. (1986)
using the finite integral method.

YVe=T"

3. Finite element method

More accurate solutions for the lateral-torsional buckling of I-beams are obtained from a finite element
analysis (Lim et al., 2002) for three end restraint cases over the complete range of the linear moment
gradient (—1 <r < 1). In this finite element program, the axial displacement and transverse displacements
are interpolated by the linear and the cubic hermitian shape functions, respectively, and the torsional
displacement is interpolated by the homogeneous solution of the following differential equation.

El,- 0" —GKr-0" =0 (20)

For the eigenvalue extraction, the subspace iteration method (Bathe, 1996) is used.

I-beams are modeled by using the beam element including warping degree of freedom. This beam ele-
ment has two nodes per element and seven nodal degrees of freedom. The principal generalized coordinate
and two-reference line system is adopted; i.e., the centroidal axis for axial and bending action; and the line
of shear center for shear, twisting, and warping action.
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Fig. 4. Basic section considered in finite-element analysis.

A doubly symmetric I-shaped cross section (p = 0.5) is shown in Fig. 4. The size of the flanges is changed
to vary the degree of monosymmetry, Eq. (10), of the cross section. One of the flanges is fixed at 30.48 by
2.54 cm while the size of the other flange is varied. The web thickness is kept at 1.87 cm and the distance
between flange centroid is 150 cm for all the sections considered. The degree of monosymmetry, p, is varied
from 0 to 1. In order to obtain the various torsional slenderness parameters, Eq. (2), various span lengths
are used in the finite element analysis.

3.1. Influence of end restraints under uniform moment

In this section the variation of end restraint factors (K,, Ky, R3) is examined for beams subjected to
uniform moment. Fig. 5 is a graph of a,, Eq. (18), versus W for doubly symmetric I-beams. Results from the
FEM are also shown in Fig. 5.

Fig. 6 is a graph of vy, Eq. (19) with a; = Gl =1, versus W for monosymmetric I-beams. Results from
the FEM are also shown in Fig. 6.

Eq. (18) for doubly symmetric sections and Eq. (19) for monosymmetric sections under a uniform
moment predict buckling moments that are in very good agreement with the FEM results, except for the

35

Eq. (18)
BC-2

©  BC-2(FEM)

A BC- 3(FEM)

) /R3—1

0 0.2 0.4 0.6 0.8 1 1.2

Torsional Slenderness (V)

Fig. 5. o vs. W for doubly symmetric I-beams.
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©  BC-2(FEM) 10 O BC-2(FEM)
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A BC- 3(FEM) 9 A BC- 3(FEM)

} BC-3

Nondimensional Buckling Moment
Nondimensional Buckling Moment

R3 =1
. . . . . . . 2 . . . . . .
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Torsional Slenderness (W) Torsional Slenderness (W)
p=0.1 0=0.3
45 r
Eq. (19) Eq. (19)
| R BC-2 w0t BC-2
22 BC- 2(FEM) ©  BC-2(FEW)
A BC-3(FEM) 35T

BC- 3(FEM)

30

Nondimensional Buckling Moment
2 (Ye)

Nondimensional Buckling Moment
(ve)

2 0 . 1 . . . .
0 0.2 0.4 0.6 0.8 1 1.2 0 0.2 0.4 0.6 0.8 1 1.2
Torsional Slenderness (W) Torsional Slenderness (W)
(a) p=0.7 (b) =09

Fig. 6. y, vs. W for monosymmetric I-beams.

case of BC-3 with the small value of the torsional slenderness, . For BC-3, if R3 in Egs. (18) and (19) is 1,
then in no case is the error in buckling capacity greater than about 10%, as shown in Figs. 5 and 6.

3.2. Influence of linear moment gradient under various end restraint conditions

3.2.1. Beams with ends simply supported; BC-1
For the range of the degree of monosymmetry from 0.3 to 0.7, a more accurate solution for ¢; may be
obtained from finite element results as follows:

2

o1y
VU= 4016 (147

o =
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0 w=1.063(FEM)
A W=0.152(FEM) 25
—Eq. (21)
2
a
O 1.5
1
0.5
0
-1.5 -1 -0.5 0 0.5 1 1.5

End Moment Ratio (r)

Fig. 7. Cy vs. end moment ratio (r) for doubly symmetric I-beams: BC-1.

The C, factors for a simply supported doubly symmetric I-beam are computed using C, = oy X o
(o = 1). The C, factors using Eq. (21) are shown in Fig. 7. Also, the C, factors obtained from the finite
element analysis are shown in Fig. 7. If instead of Eq. (17), Eq. (21) is used, then no case will show error
greater than about 9%. However, as shown in Fig. 2 and Table 1, for AISC (2001) and AISC (1986), the
maximum errors do increase to 22% and 19%, respectively.

Fig. 8 shows the results given by the improved approximate formulae, Egs. (19) and (21), against those
obtained by the finite element analysis, for monosymmetric I-beams with # = 0.851 and 0.122, respec-
tively. Egs. (19) and (21) yield values of buckling capacity that are in error by no more than 10%. However,
when AISC (1986, 2001) is applied to calculate the buckling capacity, Fig. 3 and Table 2 show errors
approaching 25%.

O W=0.851(FEM) 1277 O w=0.851(FEM) 16 [
O W=0.122(FEM)
O W=0.122(FEM) 14
Eqs. (19)&(21) o

Egs. (19)&(21)

o
o
12/\
10 o
s f
D/O/O//Q/j‘.
o b
U

—
)
=

~

Nondimensional Buckling Moment
(¥e)
Nondimensiona Buckling Moment

1.5 1 -0.5 0 0.5 1 1.5 -1.5 -1 -0.5 0 0.5 1 1.5
End Moment Ratio (r) End Moment Ratio (r)
(a) p=0.3 (b) p=0.7

Fig. 8. y, vs. end moment ratio (r) for monosymmetric I-beams: BC-1.
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O W=1.063(FEM) r
A W=0.152(FEM) 9} o

Eq. (18)XEq. (22) sl 2 o
- AISC(2001) Tertazd
+  AISC(1986) -

o
(@]

-1.5 -1 -0.5 0 0.5 1 1.5
End Moment Ratio (r)

Fig. 9. Cy, vs. end moment ratio () for doubly symmetric I-beams: BC-2.

3.2.2. Beams with ends completely fixed; BC-2
For the range of the degree of monosymmetry from 0.3 to 0.7, a more accurate solution for ¢; may be
obtained from finite element results as follows:

2

(22)
VU= 4018 (147

o =

Fig. 9 shows the G, factors given by Eq. (22) x Eq. (18) against those obtained by the finite element
analysis, for doubly symmetric I-beams with W = 1.063 and 0.152, respectively. The C, factors (AISC,
1986 = Eq. (4) x Eq. (18) and AISC, 2001 = Eq. (5) x Eq. (18)) of the AISC specifications are also shown in
Fig. 9. Eq. (22) gives results that are in error by no more than 8%. Results from Eq. (5) of AISC (2001) and
Eq. (4) of AISC (1986) give an error of 18% and 15%, respectively.

Fig. 10 shows the results given by the improved approximate formulae, Egs. (19) and (22), against those
obtained by the finite element analysis, for monosymmetric I-beams with W = 0.851 and 0.122, respec-
tively. The nondimensional buckling moments of the SSRC Guide (Galambos, 1998) are also shown in Fig.
10. The SSRC Guide (Galambos, 1998) provides a solution for nondimensional buckling moment, y,, of the
monosymmetric I-beams with various end restraint conditions as follows:

B 1 J1 0 1 /0 w2
werag b (8) < (g >

in which C, factor can be calculated from Eq. (4) of the AISC specifications (1986) and Eq. (5) of the AISC
specifications (2001).

It can be seen that Egs. (19) and (22) provide results that are in error by no more than 10%. Eq. (5) of
AISC (2001) and Eq. (4) of AISC (1986) give results with errors that are within about 40% and 42% with
respect to the finite element results, respectively.

3.2.3. Beams with ends restrained against warping; BC-3

According to results in section 3.1 and Eq. (23) in the SSRC Guide (Galambos, 1998), it is recommended
that the coefficient R3 in Eqgs. (18) and (19) be 1. If R3 = 1 and degree of monosymmetry ranges from 0.3 to
0.7, then a more accurate solution for «; can be obtained from finite element results as follows:
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Fig. 10. y, vs. end moment ratio (r) for monosymmetric I-beams: BC-2.
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A W=0.152(FEM)
Eq.(24) xEq.(18) 6 [ 0 o
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Fig. 11. Gy, vs. end moment ratio (r) for doubly symmetric I-beams: BC-3.
2
o = (24)

V=P 401 (147

Fig. 11 shows the Cy factors given by Eq. (24) x Eq. (18) against those obtained by the finite element
analysis, for doubly symmetric I-beams with W = 1.063 and 0.152, respectively. The C, factors of AISC
specifications (1986, 2001) are also shown in Fig. 11. It can be seen that Eq. (24) gives results that are in
error by no more than about 14%. Eq. (5) of AISC (2001) and Eq. (4) of AISC (1986) give results with
errors that are within about 38% with respect to the finite element results.

Fig. 12 shows the results given by the improved approximate formulae, Egs. (24) and (19), against those
obtained by the finite element analysis, for monosymmetric I-beams with W = 0.851 and 0.122, respec-
tively. The nondimensional buckling moments of the SSRC Guide (Galambos, 1998) are also shown in Fig.
12. It can be seen that Egs. (19) and (24) give results with errors that are within about 13%. Eq. (5) of AISC
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Fig. 12. y, vs. end moment ratio (r) for monosymmetric I-beams: BC-3.

(2001) and Eq. (4) of AISC (1986) give results with errors that are within about 44% with respect to the
finite element results.

4. Conclusions

This paper investigates the elastic lateral-torsional buckling of I-beams under linear moment gradient
that very precisely incorporates the effects of moment gradients and various end restraints. The elastic
critical buckling moments are obtained independently by using: (1) the Bubnov—Galerkin method and (2)
the finite element method. For the Bubnov—Galerkin method, a polynomial series is assumed to represent
the buckled lateral displacement, u, and the angle of twist, 0. More accurate solutions are obtained from a
finite element analysis for three end restraint cases over the complete range of the linear moment gradient.

The application of the present design formula for the moment modification factor and elastic buckling
moment is either highly unsafe or overly conservative according to the degree of monosymmetry and end
restraint conditions. For the range of p from 0.3 to 0.7, the present design formulae (AISC, 1986, 2001;
SSRC Guide, 1998) give results between —44% and +42% errors with respect to the finite element results. An
alternative approximate buckling moment formulae over the range of p (0.3 < p <0.7) are proposed. The
improved formulae yield the buckling capacities of I-beams that are in error by no more than £14% with
respect to the finite element results.
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