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Abstract

This paper investigates the elastic lateral–torsional buckling of I-beams under linear moment gradient that very

precisely incorporates the effects of moment gradient and various end restraints. The elastic critical buckling moments

are obtained independently by using: (1) the Bubnov–Galerkin method and (2) the finite element method. The present

formula of the moment gradient correction factor cannot satisfactorily predict the buckling capacities of doubly

symmetric and monosymmetric I-beams with various end restraints. We propose alternative equations for evaluating

the moment gradient correction factor, considering end restraint conditions.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Lateral torsional buckling is a limit state that may often be a controlling factor in steel beam designs.
Design specifications usually provide buckling solutions derived for uniform moment loading condition

and account for variable moment along the unbraced length with a moment gradient correction factor Cb

applied to these solutions.

For a simply supported doubly symmetric I-beam which is prevented from lateral deflection and twisting

but free to rotate laterally and warp, the elastic critical uniform moment, Mocr, can be expressed as follows

(Trahair, 1977):
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in which
W ¼ p
L

ffiffiffiffiffiffiffiffiffi
EIw
GKT

r
ð2Þ
EIy ¼ the minor axis flexural rigidity; GKT ¼ the St-Venant torsional rigidity; EIw ¼warping rigidity; L¼ the

unbraced length of the beam; and W ¼ torsional slenderness parameter.

If the end moments are unequal, the critical moments cannot be predicted by Eq. (1) so an adequate

evaluation is required. Most design specifications provide a solution for lateral–torsional buckling of a

doubly symmetric I-beam subjected to unequal end moments as follows:
Mcr ¼ CbMocr ð3Þ

where Mocr is obtained from Eq. (1), and Cb is a moment gradient correction factor that accounts for the

increased resistance to lateral–torsional buckling when the applied loading does not produce constant, or

uniform, moment over the entire unbraced length of beams.

The equation for the Cb factor that was used in the 1st edition of AISC Specifications (1986) is
Cb ¼ 1:75þ 1:05 � r þ 0:3 � r2 6 2:3; r ¼ MS

ML

ð4Þ
where r represents an end moment ratio, ML is the larger end moment, and MS is the smaller end moment.

The end moment ratio, r, is taken as positive for moment causing reverse-curvature bending and negative

for single-curvature bending as shown in Fig. 1. Eq. (4) was presented by Salvadori (1955).

Kirby and Nethercot (1979) presented an alternative equation for Cb, which is applicable for any shape

of moment diagrams. The equation is
Cb ¼
12:5Mmax

2:5Mmax þ 3MA þ 4MB þ 3MC

ð5Þ
where Mmax is the absolute maximum moment along L, and MA, MB, and MC are the absolute moments at

the quarter, the center, and the three-quarter point, respectively.

The 3rd edition of the American Institute of Steel Construction (AISC) load and resistance factor design

(LRFD) specifications (2001) has incorporated Eq. (5) for Cb. The American Association of State Highway

and Transportation Officials (AASHTO) LRFD specifications (1994) has included both Eq. (4) and (5)

for Cb.

The SSRC Guide (Galambos, 1998) provides a solution for a lateral–torsional buckling moment, Mm
cr , of

the monosymmetric I-beams subjected to unequal end moments as follows:
Mm
cr ¼ CbMm

ocr ð6Þ

For a simply supported monosymmetric I-beam under uniform moment, elastic critical uniform moment,
Mm

ocr, can be expressed as (Kitipornchai and Trahair, 1980; Kitipornchai et al., 1986)
Mm
ocr ¼
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Fig. 1. Simply supported I-beams under linear moment gradient.
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in which
Q ¼ p
L
� bx �

ffiffiffiffiffiffiffiffiffi
EIy
GKT

r
ð8Þ
The term bx is the monosymmetric parameter defined as
bx ¼
1

Ix

Z
A
x2y dA

�
þ

Z
A
y3 dA

�
� 2y0 ð9Þ
in which x and y are coordinates in a cross section based on the centroidal principle system having the x-axis
as the major axis, and Ix is the 2nd moment of inertia about the major axis, and y0 is the coordinate of the
shear center.

The finite element program developed by Lim et al. (2002) is used to investigate the accuracy of the

present design formulae, Eqs. (4) and (5). The FE model is built with two-node beam elements including the

warping degree of freedom. The Cb factors for a simply supported doubly symmetric I-beam computed

using Eqs. (4) and (5) are shown in Fig. 2 and Table 1. The Cb factors obtained from a finite element

analysis (Lim et al., 2002) are also shown in Fig. 2 and Table 1 for comparison.

The nondimensional buckling moment for a simply supported monosymmetric I-beam computed using

Eqs. (4) and (5) is shown in Fig. 3 and Table 2. The nondimensional buckling moment obtained from a
finite element analysis is also shown in Fig. 3 and Table 2 for comparison. From these results, we find that

the present design formulae, Eqs. (4) and (5), to account for the effects of the moment gradient may be

either highly unsafe or overly conservative.

In Fig. 3 and Table 2, the degree of monosymmetry, q, is given by (Kitipornchai and Trahair, 1980)
q ¼ IyC
IyC þ IyT

ð10Þ
in which IyC, IyT are the section minor axis second moments of area of the compression and tension flanges,

respectively. Nondimensional buckling moment, cc, is defined as
cc ¼
Mm

cr � Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EIy � GKT

p ð11Þ
Since the lateral–torsional buckling implies three kinds of deformation (twisting, lateral bending, and

warping), end restraints have a pronounced effect on the elastic lateral–torsional buckling strength of
Fig. 2. Cb factors for a simply supported doubly symmetric I-beam under moment gradient.



Table 1

Cb factors for a doubly symmetric I-beam (W ¼ 1:063) under moment gradient

End moment ratio

(r)
Cb (FEM) AISC (2001), Eq. (5) AISC (1986), Eq. (4)

Cb Error (%) Cb Error (%)

)1 1 1 0 1 0

)0.8 1.110 1.087 )2.04 1.102 )0.68
)0.6 1.243 1.190 )4.21 1.228 )1.19
)0.4 1.405 1.316 )6.34 1.378 )1.92
)0.2 1.603 1.471 )8.26 1.552 )3.18
0 1.842 1.667 )9.53 1.750 )5.01
0.2 2.121 1.923 )9.33 1.972 )7.02
0.4 2.425 2.155 )11.13 2.218 )8.54
0.6 2.705 2.193 )18.92 2.300 )14.96
0.8 2.852 2.232 )21.73 2.300 )19.35
1 2.726 2.273 )16.62 2.300 )15.62

Table 2

Nondimensional buckling moment for a monosymmetric I-beam (W ¼ 0:851, q ¼ 0:7) under moment gradient

End moment ratio (r) Cb (FEM) AISC (2001), Eq. (5) AISC (1986), Eq. (4)

Cb Error (%) Cb Error (%)

)1 5.380 5.380 0 5.380 0

)0.8 5.971 5.848 )2.06 5.929 )0.71
)0.6 6.687 6.405 )4.22 6.607 )1.20
)0.4 7.555 7.079 )6.29 7.414 )1.86
)0.2 8.614 7.912 )8.15 8.350 )3.06
0 9.883 8.967 )9.27 9.415 )4.74
0.2 11.325 10.347 )8.64 10.610 )6.31
0.4 12.742 11.595 )9.00 11.933 )6.34
0.6 13.487 11.799 )12.52 12.374 )8.25
0.8 12.325 12.009 )2.56 12.374 0.40

1 9.958 12.228 23.17 12.374 24.65

Fig. 3. Nondimensional buckling moment for a simply supported monosymmetric I-beam under moment gradient.
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beams. This paper presents a more accurate solution for the elastic lateral–torsional buckling of I-beams

under a linear moment gradient. This solution accurately incorporates the effects of the moment gradient

and various end restraints. The elastic critical buckling moments are obtained independently by using: (1)

the Bubnov–Galerkin method and (2) the finite element method. These results are then compared with
those furnished by the present design formulae.
2. Approximate buckling formula

Consider the monosymmetric I-beam of span L as shown in Fig. 1. The ends of the beam are free to

rotate about the major principal axis, but are restrained against twisting about the longitudinal axis. The

Bubnov–Galerkin method is applied to find an approximate solution of the following differential equation

governing lateral–torsional buckling of beams (Vlasov, 1960).
Table

End re

End

Late

Late

Twi

War
EIy � uIV þ L2 � ðMx � hÞ00 ¼ 0 ð12Þ
EIx � hIV � L2 � GKT � h00 þ L2 �Mx � u00 � L2 � bx � ðMx � h0Þ0 ¼ 0 ð13Þ
where u and h denote the lateral deflection and twisting, respectively, Mx is the bending moment about the

major axis and the prime denotes differentiation with respect to dimensionless variable n (n ¼ z=L,
06 z6 L).

The buckled shape of beams subjected to the linear moment gradient could be reasonably approximated

by the two terms for the lateral deflection, u, and one term for the angle of twist, h.
u ¼ A1 � v1 þ A2 � v2 ð14aÞ
h ¼ B1 � u1 ð14bÞ
where the functions v1, v2 and u1 are so chosen that the buckled state of beams should satisfy the given

boundary conditions as shown in Table 3; A1, A2, and B1 are unknown coefficients. A fourth degree

polynomial for the functions v1 and u1 and a fifth degree polynomial for the function v2 are chosen for

simplicity of mathematical treatment.
The bending moment at any point along the span can be expressed as
Mx ¼ M � f1� ð1þ rÞ � ng ð15Þ
in which M is the left-hand end moment as shown in Fig. 1.

2.1. Doubly symmetric I-beam

Using the Bubnov–Galerkin approach and approximate functions for u and h, the elastic buckling

moment, Mcr, can be calculated by
3

straint conditions

restraints BC-1 simply supported BC-2 fixed end BC-3 warping prevented

ral displ. Prevented Prevented Prevented

ral bending Free Prevented Free

sting Prevented Prevented Prevented

ping Free Prevented Prevented
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Mcr ¼ a1 � a2 �Mocr ð16Þ
in which a1 and a2 are the coefficients that depend on the linear moment gradient and the end restraint

condition, respectively.
a1 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� rÞ2 þ R1 � ð1þ rÞ2
q ð17Þ
where R1 is the coefficient that depends on the interaction between the moment gradient and the end re-
straint condition. For BC-1, R1 ¼ 0:132; for BC-2, R1 ¼ 0:156; and for BC-3, R1 ¼ 0:087. These R1 values

can be used in Eq. (17). In the case of the uniform moment condition (r ¼ �1), a1 ¼ 1. For BC-1, Eq. (17)

provides an identical result to that of Kitipornchai et al. (1986) using the finite integral method.

a2 can be calculated by
a2 ¼
1

Ku � Kh �
ffiffiffiffiffiffi
R3

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

h þ W 2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ W 2

p ð18Þ
where Ku and Kh are the effective length factors for the lateral and warping restraint, respectively. For BC-1,

Ku ¼ 1, Kh ¼ 1; for BC-2, Ku ¼ 0:5, Kh ¼ 0:5; and for BC-3, Ku ¼ 1, Kh ¼ 0:5. These effective length factors

can be used in Eq. (18). In Eq. (18), R3 is the coefficient that depends on the difference between the lateral

and warping restraint conditions. For BC-1 and BC-2, R3 ¼ 1; for BC-3, R3 ¼ 0:8.
2.2. Monosymmetric I-beam

The nondimensional elastic buckling moment, cc, for the monosymmetric I-beam, can be expressed as

follows:
cc ¼ p � a1 �
1

Ku �
ffiffiffiffiffiffi
R3

p � 1

2
� G1 � a1 �

Q

Ku �
ffiffiffiffiffiffi
R3

p

8<
: þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� G1 � a1 �

Q

Ku �
ffiffiffiffiffiffi
R3

p
� �2

þ 1þ W 2

K2
h

� �s 9=
; ð19Þ
in which G1 ¼ ð1� rÞ=2. For BC-1, Eq. (19) provides an identical result to that of Kitipornchai et al. (1986)

using the finite integral method.
3. Finite element method

More accurate solutions for the lateral–torsional buckling of I-beams are obtained from a finite element

analysis (Lim et al., 2002) for three end restraint cases over the complete range of the linear moment

gradient (�16 r6 1). In this finite element program, the axial displacement and transverse displacements

are interpolated by the linear and the cubic hermitian shape functions, respectively, and the torsional

displacement is interpolated by the homogeneous solution of the following differential equation.
EIw � hIV � GKT � h00 ¼ 0 ð20Þ
For the eigenvalue extraction, the subspace iteration method (Bathe, 1996) is used.

I-beams are modeled by using the beam element including warping degree of freedom. This beam ele-

ment has two nodes per element and seven nodal degrees of freedom. The principal generalized coordinate
and two-reference line system is adopted; i.e., the centroidal axis for axial and bending action; and the line

of shear center for shear, twisting, and warping action.



Fig. 4. Basic section considered in finite-element analysis.
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A doubly symmetric I-shaped cross section (q ¼ 0:5) is shown in Fig. 4. The size of the flanges is changed

to vary the degree of monosymmetry, Eq. (10), of the cross section. One of the flanges is fixed at 30.48 by

2.54 cm while the size of the other flange is varied. The web thickness is kept at 1.87 cm and the distance

between flange centroid is 150 cm for all the sections considered. The degree of monosymmetry, q, is varied
from 0 to 1. In order to obtain the various torsional slenderness parameters, Eq. (2), various span lengths

are used in the finite element analysis.
3.1. Influence of end restraints under uniform moment

In this section the variation of end restraint factors (Ku, Kh, R3) is examined for beams subjected to
uniform moment. Fig. 5 is a graph of a2, Eq. (18), versus W for doubly symmetric I-beams. Results from the

FEM are also shown in Fig. 5.

Fig. 6 is a graph of cc, Eq. (19) with a1 ¼ G1 ¼ 1, versus W for monosymmetric I-beams. Results from

the FEM are also shown in Fig. 6.

Eq. (18) for doubly symmetric sections and Eq. (19) for monosymmetric sections under a uniform

moment predict buckling moments that are in very good agreement with the FEM results, except for the
Fig. 5. a2 vs. W for doubly symmetric I-beams.



Fig. 6. cc vs. W for monosymmetric I-beams.
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case of BC-3 with the small value of the torsional slenderness, W . For BC-3, if R3 in Eqs. (18) and (19) is 1,

then in no case is the error in buckling capacity greater than about 10%, as shown in Figs. 5 and 6.

3.2. Influence of linear moment gradient under various end restraint conditions

3.2.1. Beams with ends simply supported; BC-1

For the range of the degree of monosymmetry from 0.3 to 0.7, a more accurate solution for a1 may be

obtained from finite element results as follows:
a1 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� rÞ2 þ 0:16 � ð1þ rÞ2
q ð21Þ



Fig. 7. Cb vs. end moment ratio (r) for doubly symmetric I-beams: BC-1.
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The Cb factors for a simply supported doubly symmetric I-beam are computed using Cb ¼ a1 � a2
(a2 ¼ 1). The Cb factors using Eq. (21) are shown in Fig. 7. Also, the Cb factors obtained from the finite

element analysis are shown in Fig. 7. If instead of Eq. (17), Eq. (21) is used, then no case will show error

greater than about 9%. However, as shown in Fig. 2 and Table 1, for AISC (2001) and AISC (1986), the
maximum errors do increase to 22% and 19%, respectively.

Fig. 8 shows the results given by the improved approximate formulae, Eqs. (19) and (21), against those

obtained by the finite element analysis, for monosymmetric I-beams with W ¼ 0:851 and 0.122, respec-

tively. Eqs. (19) and (21) yield values of buckling capacity that are in error by no more than 10%. However,

when AISC (1986, 2001) is applied to calculate the buckling capacity, Fig. 3 and Table 2 show errors

approaching 25%.
Fig. 8. cc vs. end moment ratio (r) for monosymmetric I-beams: BC-1.



Fig. 9. Cb vs. end moment ratio (r) for doubly symmetric I-beams: BC-2.
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3.2.2. Beams with ends completely fixed; BC-2

For the range of the degree of monosymmetry from 0.3 to 0.7, a more accurate solution for a1 may be

obtained from finite element results as follows:
a1 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� rÞ2 þ 0:18 � ð1þ rÞ2
q ð22Þ
Fig. 9 shows the Cb factors given by Eq. (22)�Eq. (18) against those obtained by the finite element

analysis, for doubly symmetric I-beams with W ¼ 1:063 and 0.152, respectively. The Cb factors (AISC,

1986¼Eq. (4)�Eq. (18) and AISC, 2001¼Eq. (5)�Eq. (18)) of the AISC specifications are also shown in

Fig. 9. Eq. (22) gives results that are in error by no more than 8%. Results from Eq. (5) of AISC (2001) and

Eq. (4) of AISC (1986) give an error of 18% and 15%, respectively.

Fig. 10 shows the results given by the improved approximate formulae, Eqs. (19) and (22), against those
obtained by the finite element analysis, for monosymmetric I-beams with W ¼ 0:851 and 0.122, respec-

tively. The nondimensional buckling moments of the SSRC Guide (Galambos, 1998) are also shown in Fig.

10. The SSRC Guide (Galambos, 1998) provides a solution for nondimensional buckling moment, cc, of the
monosymmetric I-beams with various end restraint conditions as follows:
cc ¼ p � Cb �
1

Ku
� 1

2
� Q
Ku

8<
: þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
� Q

Ku

� �2

þ 1þ W 2

K2
h

� �s 9=
; ð23Þ
in which Cb factor can be calculated from Eq. (4) of the AISC specifications (1986) and Eq. (5) of the AISC

specifications (2001).

It can be seen that Eqs. (19) and (22) provide results that are in error by no more than 10%. Eq. (5) of

AISC (2001) and Eq. (4) of AISC (1986) give results with errors that are within about 40% and 42% with

respect to the finite element results, respectively.
3.2.3. Beams with ends restrained against warping; BC-3

According to results in section 3.1 and Eq. (23) in the SSRC Guide (Galambos, 1998), it is recommended

that the coefficient R3 in Eqs. (18) and (19) be 1. If R3 ¼ 1 and degree of monosymmetry ranges from 0.3 to
0.7, then a more accurate solution for a1 can be obtained from finite element results as follows:



Fig. 10. cc vs. end moment ratio (r) for monosymmetric I-beams: BC-2.

Fig. 11. Cb vs. end moment ratio (r) for doubly symmetric I-beams: BC-3.
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a1 ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� rÞ2 þ 0:1 � ð1þ rÞ2
q ð24Þ
Fig. 11 shows the Cb factors given by Eq. (24)�Eq. (18) against those obtained by the finite element

analysis, for doubly symmetric I-beams with W ¼ 1:063 and 0.152, respectively. The Cb factors of AISC

specifications (1986, 2001) are also shown in Fig. 11. It can be seen that Eq. (24) gives results that are in

error by no more than about 14%. Eq. (5) of AISC (2001) and Eq. (4) of AISC (1986) give results with

errors that are within about 38% with respect to the finite element results.

Fig. 12 shows the results given by the improved approximate formulae, Eqs. (24) and (19), against those

obtained by the finite element analysis, for monosymmetric I-beams with W ¼ 0:851 and 0.122, respec-

tively. The nondimensional buckling moments of the SSRC Guide (Galambos, 1998) are also shown in Fig.
12. It can be seen that Eqs. (19) and (24) give results with errors that are within about 13%. Eq. (5) of AISC



Fig. 12. cc vs. end moment ratio (r) for monosymmetric I-beams: BC-3.
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(2001) and Eq. (4) of AISC (1986) give results with errors that are within about 44% with respect to the
finite element results.
4. Conclusions

This paper investigates the elastic lateral–torsional buckling of I-beams under linear moment gradient

that very precisely incorporates the effects of moment gradients and various end restraints. The elastic

critical buckling moments are obtained independently by using: (1) the Bubnov–Galerkin method and (2)

the finite element method. For the Bubnov–Galerkin method, a polynomial series is assumed to represent

the buckled lateral displacement, u, and the angle of twist, h. More accurate solutions are obtained from a

finite element analysis for three end restraint cases over the complete range of the linear moment gradient.

The application of the present design formula for the moment modification factor and elastic buckling
moment is either highly unsafe or overly conservative according to the degree of monosymmetry and end

restraint conditions. For the range of q from 0.3 to 0.7, the present design formulae (AISC, 1986, 2001;

SSRC Guide, 1998) give results between )44% and +42% errors with respect to the finite element results. An

alternative approximate buckling moment formulae over the range of q (0:36 q6 0:7) are proposed. The

improved formulae yield the buckling capacities of I-beams that are in error by no more than �14% with

respect to the finite element results.
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